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LETTER TO THE EDITOR 

Diffusion and fracton dimensionality on fractals and on 
percolation clusters 

S Havlin and D Ben-Avraham 
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel 

Received 30 June 1983 

Abstract. We present simulations of diffusion on an exact fractal and on percolation 
clusters at criticality for two and three dimensions. The results for the fractal support the 
Rammal and Toulouse proposition that dS(N) /dNxB(N) /S (N) .  The results for percola- 
tion are in excellent agreement with the Alexander and Orbach conjecture that the fracton 
dimensionality d = j. 

The problem of the density of states on fractals and on percolation clusters has recently 
been intensively discussed (Alexander and Orbach 1982, Alexander 1983, Domany 
et a1 1983, Rammal and Toulouse 1983, Ben-Avraham and Havlin 1982). Of 
particular interest is the Alexander and Orbach (1982) conjecture that the fracton 
dimensionality d which describes the density of states has the same numerical value 
J = $  for percolation in any space dimensionality. Very recently, Rammal and 
Toulouse (1983) have proposed the following argument to support this conjecture. 
For diffusion on percolation clusters (at criticality) or on fractals, let S ( N )  be the 
number of distinct sites visited by the diffusion after N steps, and let B ( N )  be the 
number of boundary sites in S ( N ) ,  i.e. those sites with accessible neighbours outside 
S ( N ) .  Then 

dS(N)/dNccB(N)/S(N). (1) 
In order for the conjecture to be correct, it is required that 

B ( N )  oc s ( N ) ' / ~  o c ~  (N)"' aN;i12D, 

where d is the fractal dimensionality and D is the exponent describing the diffusion 
length R ( N ) D  ocN. 

In the present letter, we present some numerical evidence which strongly supports 
the conjecture for percolation in d = 2 and 3. This is done by improved calculations 
of D (Ben-Avraham and Havlin 1982, Havlin et a1 1983) achieved mainly by increasing 
N by one order of magnitude. Also, equation (1) is verified to high accuracy for-an 
exact fractal. Moreover, we show conclusively that B ( N )  does not behave like Rd- ' ,  
as one might expect considering the boundary to be a sphere cut of the fractal 
(Alexander 1983). 

We first consider an exact fractal with d = In 3/ln 2 = 1.585 described in figure 1. 
The fracton dimensionality and the diffusion exponent are easily calculated exactly 
via the conductivity exponent CL by a method similar to that presented by Gefen 
et a1 (1981). The results are found to be D =ln(21/4)/ln 2-2.392 and 
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Figure 1. Fractal used in the text. The iteration process making the structure self similar 
should be continued indefinitely. 

d =  2z/D = 2 In 3/1n(21/4) = 1.325. We simulated about 40 000 .diffusions on this 
fractal up to N = 500. From measurements of S ( N ) a N d ' * ,  we obtained 
d = 1.32*0.01, which is in excellent agreement with the theoretical value. In order to 
confirm equation (l) ,  it is equivalent to show that 

B ( N )  aS(N)", x =2-2 /2*  (3) 
Indeed, results of the above simulations yield x = 0.493 f 0.005, which fits very well 
the prediction obtained from equation (1)  that x = 2 - 2/d = 0.491. The measurement 
of B ( N )  was done by counting for each N-steps diffusion those sites which have at 
least one nearest neighbour site not visited previously. In figure 2, we present a plot 
of In B ( N )  against In S ( N )  which shows graphically the results of the simulations as 
compared with the theoretical prediction. We_ note that one can confidently reject 
the possibility that B ( N ) E  R(N)d- '  aS(N)(d-1)'6. The distinction between x = 
2 - 2/d  and x = 1 - 116 is easy to see in this exact fractal, in contrast to the situation 
in percolation where these two predictions do not differ by very much (Alexander 
1983). Indeed, x = 1 - 1/6 gives the value of 0.369, which differs from the measured 
value of x = 0.493 f 0.005. Thus, we conclude that equation (1) holds while it is not 
true that the boundary of diffusions is like a sphere cut in the fractal. 

In the following, we consider results for diffusion on percolation on square, 
triangular and cubic lattices at criticality. Using the same methods we presented 
previously (Ben-Avraham and Havlin 1982), we simulated about lo4 random walks 
on each of two different ensembles of percolation clusters. In the first ensemble, we 
considered only those clusters whose size is larger than the span of the walks (large 
clusters). In the other ensemble, all clusters were taken into account (all clusters). 
Denote the diffusion exponent measured for large clusters by D, and that for all 
clusters by D'. The two exponents are related by D'=D/(1-/3/2v) (Ben-Avraham 
and Havlin 1982, Havlin er a1 1983, Gefen er a1 1983). The main improvement of 
the present results is that walks were performed for up to 5 000 steps, which is an 
order of magnitude larger than previously (Ben-Avraham and Havlin 1982). Thus, 
it is possible to see from these new results that the exponents D and D' do not 
converge for N - 500. The results of diffusion on large clusters for percolation in 
d = 2 and d = 3 are presented in figure 3, where we plot In N as a function of In R ( N ) .  
The slope of the resulting curve is the exponent D. It is seen that the slope changes 
with N, and it  is smaller for smaller N. In figure 4, we plot the slope of the curve in 
figure 3, which is the local fractal dimensionality D ( N )  (Havlin and Ben-Avraham 
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Figure 2. Graph of In B ( N )  against In S ( N )  for 
diffusion on the fractal described in figure 1. The 
circles represent the numerical data and the full line 
is drawn from equation (1). 
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Figure 3. Graph of In N against In R ( N )  for 
diffusion on large clusters in d = 2 and d = 3. The 
circles represent numerical data and the full line is 
the extrapolated slope of the curve. 
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Figure 4. Graph of D ( N ) ,  the slope of the curve in figure 3. The squares represent the 
data for diffusion on percolation on a square lattice, and the triangles on a triangular lattice. 

1982). In this figure we also present results for diffusion on percolation on a triangular 
lattice. It is seen that for N b lo3 the results for the square and triangular lattices 
coincide while for N =s lo3, D ( N )  for the triangular lattice is consistently higher than 
D ( N )  of the square lattice. This indicates that the range below N - l o 3  (which 
corresponds to R - 10 lattice spacings) is affected by the lattice geometry which allows 
convergence only for very large N. The errors of D ( N )  can also be determined from 
figure 4. 
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A similar analysis was performed for diffusion on all clusters and the results are 
presented in table 1. The result for the diffusion exponent D obtained from calculations 
using D' is somewhat smaller than the value of the directly measured D. This is 
probably because convergence for D' is affected not only by geometry but by the 
cluster distribution convergence as well. This is consistent with results of Pandey and 
Stauffer (1983) that D' converges for N - lo7 (for d = 3). We used for the calculation 
of d = d -@/U the known values of p and U for d = 2 and 3 (Stauffer 1979). The 
main result is in very good agreement with the Alexander and Orbach (1982) conjec- 
ture that d = $. 

Table 1. Diffusion exponents and fracton dimensionality. 

d D D'  D = D ' ( l - P / 2 v )  6=2L5/D 

2 2.84h0.05 2.95 f 0.05 2.80k 0.10 1.33zk0.03 
3 3.68i0.05 4.90*0.05 3.63*0.10 1.34 f 0.03 

We also measured the fracton dimensionality d from the above simulations on 

(4) 

large clusters directly by 

S ( N )  cc R (N)'cc"'lD cc Nal2 .  

The results for d are 1.26 for d = 2 and 1.24 for d = 3. These values are lower than 
the conjectured value of $. The reason is that the clusters are limited to a frame, 
which causes d to be effectively smaller (finite-size effects). Indeed, we measured 
6 via S ( N ) E R ( N ) ~  and found 6= 1.8 instead of 1.9 for d = 2  and 6 = 2 . 3  instead 
of 2.5 for d = 3. One should note, however, that the ratio 2d/D gives excellent 
agreement with the directly measured d. The important fact is that the value of D 
for large clusters is not influenced by finite-size effects, since the random walk never 
reaches the limiting frame of the cluster. Therefore, in table 1 we calculated d using 
known and reliable values of d and measured values of D, rather than directly 
measuring d. 

In conclusion, we have presented simulations of diffusion on exact fractal and on 
percolation clusters at criticality in d = 2 and 3. The results strongly support both the 
Alexander and Orbach (1982) conjecture d = $ and the proposition of Rammal and 
Toulouse (1983) given in equation (1). 

The authors wish to thank Professor S Alexander for stimulating discussions and 
D Movshovitz for helping with the computer programming. One of the authors (DBA) 
also wishes to thank the Wolf Foundation for financial support. 
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